کد مقاله | کد نشریه | سال انتشار | مقاله انگلیسی | نسخه تمام متن |
---|---|---|---|---|
1871575 | 1530960 | 2015 | 6 صفحه PDF | دانلود رایگان |

A sensitivity analysis for the new generation of fast reactors [Salvatores (2008)] has shown the importance of improved cross section data for several actinides. Among them, the 240,242Pu(n,f) cross sections require an accuracy improvement to 1-3% and 3-5%, respectively, from the current level of 6% and 20%. At the Van de Graaff facility of the Institute for Reference Materials and Measurements (JRC-IRMM) the fission cross section of the two isotopes was measured relative to two secondary standard reactions, 237Np(n,f) and 238U(n,f), using a twin Frisch-grid ionization chamber. The secondary standard reactions were benchmarked through measurements against the primary standard reaction 235U(n,f) in the same geometry. Sample masses were determined by means of low-geometry alpha counting or/and a 2π Frisch-grid ionization chamber, with an uncertainty lower than 2%. The neutron flux and the impact of scattering from material between source and target was examined, the largest effect having been found in cross section ratio measurements between a fissile and a fertile isotope. Our 240,242Pu(n,f) cross sections are in agreement with previous experimental results and slightly lower than present evaluations. In case of the 242Pu(n,f) reaction no evidence for a resonance at En=1.1 MeV was found.
Journal: Physics Procedia - Volume 64, 2015, Pages 177-182