کد مقاله | کد نشریه | سال انتشار | مقاله انگلیسی | نسخه تمام متن |
---|---|---|---|---|
1871775 | 1530968 | 2014 | 9 صفحه PDF | دانلود رایگان |
The increasing application of hybrid structures in component design and fabrication allows to constantly enhance the realization of lightweight potentials. Laser-based joining of metals to polymers can obtaina local bonding with high load bearing capability. During the process, the polymer gets molten by the energy input of the laser beam and penetrates into the structure of the metal surface by means of a defined joining pressure. Macroscopic structures on the metal surface, produced by cutting or laser processing, are possible surface treatmentsfor achieving thepolymer-metal joints. The optimal geometry and other key parameters for the macroscopic surface structures are only partially known at present, e.g. a rising structure density causes a higher load capacity. Based on grooves and drilled holes, as referencegeometries, the depth (0.1-0.9 mm), width (0.3-1.1 mm), alignment angle, diameter (1.0mm- 1.5mm), structure density and penetration depth of the molten polymer were correlated to the separation force. The results allow an essential insight into the main effects ofmacroscopic structures on the mechanical joint properties and the material performance of the polymer during the process.
Journal: Physics Procedia - Volume 56, 2014, Pages 782-790