کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
1872223 1530997 2012 4 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
Growth process of BaZrO3 doped YBCO films by TFA-MOD method
موضوعات مرتبط
مهندسی و علوم پایه فیزیک و نجوم فیزیک و نجوم (عمومی)
پیش نمایش صفحه اول مقاله
Growth process of BaZrO3 doped YBCO films by TFA-MOD method
چکیده انگلیسی

Crystal growth process of YBa2Cu3O7-X (YBCO) films with BaZrO3 (BZO) pinning centers were investigated to enhance JC property by controlling microstructure of the films. The YBCO films were fabricated by a metal organic deposition (MOD) method using solutions with trifluoroacetates (TFA) and Zr-salts. Quenched films were prepared by cooling them rapidly during crystallization process and crystallized phases were identified by an X-ray diffraction (XRD) measurement. It is indicating that BZO forms at lower temperature than that of YBCO formation and that BZO and BaF2 are crystallized at the similar temperature range around 700°C. Then, we kept the heating temperature which is under 600°C before crystallization temperature of YBCO and investigated the effect of temperature keeping on film growth. In the film kept for more than 3 hours, BZO peak was detected by XRD measurement. However, BZO particles were not observed in the film even kept for 9 hours by transmission electron microscopy (TEM) and energy dispersive X-ray (EDS) analyses. It is indicated that growth rate of BZO is slow at 600°C. On the other hand, smaller YBCO particles and decreasing of surface roughness (Ra) were observed for the film which were kept at 600°C for 3 hours and then crystallized. This result suggests the density of YBCO film is higher than that for YBCO without that process. In summary, it can be considered that YBCO film density become high by temperature keeping process below 600°C before YBCO crystallization and that size of BZO particles are determined by heat treatment at the temperature of above 600°C

ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Physics Procedia - Volume 27, 2012, Pages 212-215