کد مقاله | کد نشریه | سال انتشار | مقاله انگلیسی | نسخه تمام متن |
---|---|---|---|---|
1872730 | 1039691 | 2009 | 10 صفحه PDF | دانلود رایگان |

Electrokinetics is a developping technology that is intended to separate and extract heavy metals, radionuclides, and organic contaminants from saturated or unsaturated soils, sludges and sediments, and groundwater. The goal of electrokinetic remediation is to effect the migration of subsurface contaminants in an imposed electric field. This technique is known as electrokinetic remediation, electroreclamation, electrochemical decontamination, electrorestoration, electromigration or electrochemical soil processing. Electrokinetics involves the installation of electrodes into the subsurface surrounding the contaminated region. After the electrodes are in place, a low electrical potential is applied across the anode(s) (positively charged electrode) and the cathode(s) (negatively charged electrode). As a result of the electrical gradient, different physico-chemical reactions occur and contaminant transport occurs due to various mechanisms within the soil and groundwater. Generally, for the migration to be significant, the contaminants should be in a soluble form. If they are not soluble, they need to be desorbed, dissolved, and/or solubilized into the pore solution before they can be adequately transported from the soil to an electrode wells/reservoirs. Different types of contaminants have been investigated and research has been conducted to optimize the electrokinetic variables. The present study was undertaken to systematically investigate the effect of initial sludge water content, and heating on the electrokinetic remediation of alumium-contaminated sludge. A total of four laboratory experiments were conducted using drinking water sludge. The first two tests studied the effect of variation of initial sludge water content under an ambient temperature, and the last two tests studied the effect of heating on electrokinetic remediation under conditions of both constant saturation and applied voltage.
Journal: Physics Procedia - Volume 2, Issue 3, November 2009, Pages 1021-1030