کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
1873534 1530999 2012 7 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
Mixture Models for Web Page Classification
موضوعات مرتبط
مهندسی و علوم پایه فیزیک و نجوم فیزیک و نجوم (عمومی)
پیش نمایش صفحه اول مقاله
Mixture Models for Web Page Classification
چکیده انگلیسی

This paper presents a method for designing semi-supervised classifier trained on labeled and unlabeled instances. We explore the trade-off maximizing a generative likelihood of labeled and unlabeled data. Moreover, mixture models are an interesting and flexible model family. The different uses of mixture models include for example generative models and density estimation. This paper investigates semi-supervised learning of mixture models using a unified objective function taking both labeled and unlabeled data into account. We conducted experiments on the WebKB and 20NEWSGROUPS. The results show that unlabeled data results in improvement in classification accuracy over the supervised model.

ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Physics Procedia - Volume 25, 2012, Pages 499-505