کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
1873535 1530999 2012 7 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
Prediction of the Chaotic Time Series Based on Chaotic Simulated Annealing and Support Vector Machine
موضوعات مرتبط
مهندسی و علوم پایه فیزیک و نجوم فیزیک و نجوم (عمومی)
پیش نمایش صفحه اول مقاله
Prediction of the Chaotic Time Series Based on Chaotic Simulated Annealing and Support Vector Machine
چکیده انگلیسی

The regression accuracy and generalization performance of the support vector regression (SVR) model depend on a proper setting of its parameters. An optimal selection approach of SVR parameters was put forward based on chaotic simulated annealing algorithm (CSAA), the key parameters C and ɛ of SVM and the radial basis kernel parameter g were optimized within the global scope. The support vector regression model was established for chaotic time series prediction by using the optimum parameters. The time series of Lorenz system was used to testify the effectiveness of the model. The root mean square error of prediction reached8.756 × 10-4. Simulation results show that the optimal selection approach based on CSAA is available and the CSAA-SVR model can predict the chaotic time series accurately.

ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Physics Procedia - Volume 25, 2012, Pages 506-512