کد مقاله | کد نشریه | سال انتشار | مقاله انگلیسی | نسخه تمام متن |
---|---|---|---|---|
1892893 | 1533768 | 2013 | 6 صفحه PDF | دانلود رایگان |
عنوان انگلیسی مقاله ISI
Extremal Kähler metrics and Bach–Merkulov equations
دانلود مقاله + سفارش ترجمه
دانلود مقاله ISI انگلیسی
رایگان برای ایرانیان
موضوعات مرتبط
مهندسی و علوم پایه
ریاضیات
فیزیک ریاضی
پیش نمایش صفحه اول مقاله

چکیده انگلیسی
In this paper, we study a coupled system of equations on oriented compact 4-manifolds which we call the Bach–Merkulov equations. These equations can be thought of as the conformally invariant version of the classical Einstein–Maxwell equations. Inspired by the work of C. LeBrun on Einstein–Maxwell equations on compact Kähler surfaces, we give a variational characterization of solutions to Bach–Merkulov equations as critical points of the Weyl functional. We also show that extremal Kähler metrics are solutions to these equations, although, contrary to the Einstein–Maxwell analogue, they are not necessarily minimizers of the Weyl functional. We illustrate this phenomenon by studying the Calabi action on Hirzebruch surfaces.
ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Journal of Geometry and Physics - Volume 70, August 2013, Pages 117–122
Journal: Journal of Geometry and Physics - Volume 70, August 2013, Pages 117–122
نویسندگان
Caner Koca,