کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
1893835 1044114 2012 30 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
Knot invariants and new weight systems from general 3D TFTs
موضوعات مرتبط
مهندسی و علوم پایه ریاضیات فیزیک ریاضی
پیش نمایش صفحه اول مقاله
Knot invariants and new weight systems from general 3D TFTs
چکیده انگلیسی

We introduce and study the Wilson loops in general 3D topological field theories (TFTs), and show that the expectation value of Wilson loops also gives knot invariants as in the Chern–Simons theory. We study the TFTs within the Batalin–Vilkovisky (BV) and the Alexandrov–Kontsevich–Schwarz–Zaboronsky (AKSZ) framework, and the Ward identities of these theories imply that the expectation value of the Wilson loop is a pairing of two dual constructions of (co)cycles of certain extended graph complex (extended from Kontsevich’s graph complex to accommodate the Wilson loop). We also prove that there is an isomorphism between the same complex and certain extended Chevalley–Eilenberg complex of Hamiltonian vector fields. This isomorphism allows us to generalize the Lie algebra weight system for knots to weight systems associated with any homological vector field and its representations. As an example we construct knot invariants using holomorphic vector bundle over hyperKähler manifolds.

ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Journal of Geometry and Physics - Volume 62, Issue 2, February 2012, Pages 242–271
نویسندگان
, ,