کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
1894154 1044144 2010 11 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
Structure of the curvature tensor on symplectic spinors
کلمات کلیدی
موضوعات مرتبط
مهندسی و علوم پایه ریاضیات فیزیک ریاضی
پیش نمایش صفحه اول مقاله
Structure of the curvature tensor on symplectic spinors
چکیده انگلیسی

We study symplectic manifolds (M2l,ω)(M2l,ω) equipped with a symplectic torsion-free affine (also called Fedosov) connection ∇∇ and admitting a metaplectic structure. Let SS be the so-called symplectic spinor bundle over MM and let RSRS be the curvature field of the symplectic spinor covariant derivative ∇S∇S associated to the Fedosov connection ∇∇. It is known that the space of symplectic spinor valued exterior differential 22-forms, Γ(M,⋀2T∗M⊗S)Γ(M,⋀2T∗M⊗S), decomposes into three invariant subspaces with respect to the structure group, which is the metaplectic group Mp(2l,R)Mp(2l,R) in this case. For a symplectic spinor field ϕ∈Γ(M,S)ϕ∈Γ(M,S), we compute explicitly the projections of RSϕ∈Γ(M,⋀2T∗M⊗S)RSϕ∈Γ(M,⋀2T∗M⊗S) onto the three mentioned invariant subspaces in terms of the symplectic Ricci and symplectic Weyl curvature tensor fields of the connection ∇∇. Using this decomposition, we derive a complex of first order differential operators provided the Weyl curvature tensor field of the Fedosov connection is trivial.

ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Journal of Geometry and Physics - Volume 60, Issue 9, September 2010, Pages 1251–1261
نویسندگان
,