کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
1894296 1044159 2009 29 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
Local foliations and optimal regularity of Einstein spacetimes
موضوعات مرتبط
مهندسی و علوم پایه ریاضیات فیزیک ریاضی
پیش نمایش صفحه اول مقاله
Local foliations and optimal regularity of Einstein spacetimes
چکیده انگلیسی

We investigate the local regularity of pointed spacetimes, that is, time-oriented Lorentzian manifolds in which a point and a future-oriented, unit timelike vector (an observer) are selected. Our main result covers the class of Einstein vacuum spacetimes. Under curvature and injectivity bounds only, we establish the existence of a local coordinate chart defined in a ball with definite size in which the metric coefficients have optimal regularity. The proof is based on quantitative estimates for, on one hand, a constant mean curvature (CMC) foliation by spacelike hypersurfaces defined locally near the observer and, on the other hand, the metric in local coordinates that are spatially harmonic in each CMC slice. The results and techniques in this paper should be useful in the context of general relativity for investigating the long-time behavior of solutions to the Einstein equations.

ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Journal of Geometry and Physics - Volume 59, Issue 7, July 2009, Pages 913–941
نویسندگان
, ,