کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
1894346 1044164 2009 11 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
Morse–Novikov cohomology of locally conformally Kähler manifolds
کلمات کلیدی
موضوعات مرتبط
مهندسی و علوم پایه ریاضیات فیزیک ریاضی
پیش نمایش صفحه اول مقاله
Morse–Novikov cohomology of locally conformally Kähler manifolds
چکیده انگلیسی

A locally conformally Kähler (LCK) manifold is a complex manifold admitting a Kähler covering, with the monodromy acting on this covering by holomorphic homotheties. We define three cohomology invariants, the Lee class, the Morse–Novikov class, and the Bott–Chern class, of an LCK-structure. These invariants play together the same role as the Kähler class in Kähler geometry. If these classes coincide for two LCK-structures, the difference between these structures can be expressed by a smooth potential, similar to the Kähler case. We show that the Morse–Novikov class and the Bott–Chern class of a Vaisman manifold vanish. Moreover, for any LCK-structure on a manifold, admitting a Vaisman structure, we prove that its Morse–Novikov class vanishes. We show that a compact LCK-manifold MM with vanishing Bott–Chern class admits a holomorphic embedding into a Hopf manifold, if dimCM⩾3dimCM⩾3, a result which parallels the Kodaira embedding theorem.

ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Journal of Geometry and Physics - Volume 59, Issue 3, March 2009, Pages 295–305
نویسندگان
, ,