کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
1894439 1044174 2008 19 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
Lie bialgebras of complex type and associated Poisson Lie groups
موضوعات مرتبط
مهندسی و علوم پایه ریاضیات فیزیک ریاضی
پیش نمایش صفحه اول مقاله
Lie bialgebras of complex type and associated Poisson Lie groups
چکیده انگلیسی

In this work we study a particular class of Lie bialgebras arising from Hermitian structures on Lie algebras such that the metric is ad-invariant. We will refer to them as Lie bialgebras of complex type. These give rise to Poisson Lie groups GG whose corresponding duals G∗G∗ are complex Lie groups. We also prove that a Hermitian structure on gg with ad-invariant metric induces a structure of the same type on the double Lie algebra Dg=g⊕g∗Dg=g⊕g∗, with respect to the canonical ad-invariant metric of neutral signature on DgDg. We show how to construct a 2n2n-dimensional Lie bialgebra of complex type starting with one of dimension 2(n−2),n≥22(n−2),n≥2. This allows us to determine all solvable Lie algebras of dimension ≤6 admitting a Hermitian structure with ad-invariant metric. We present some examples in dimensions 4 and 6, including two one-parameter families, where we identify the Lie–Poisson structures on the associated simply connected Lie groups, obtaining also their symplectic foliations.

ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Journal of Geometry and Physics - Volume 58, Issue 10, October 2008, Pages 1310–1328
نویسندگان
, , ,