کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
1894588 1044208 2007 21 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
A geometrical setting for geometric phases on complex Grassmann manifolds
موضوعات مرتبط
مهندسی و علوم پایه ریاضیات فیزیک ریاضی
پیش نمایش صفحه اول مقاله
A geometrical setting for geometric phases on complex Grassmann manifolds
چکیده انگلیسی

The geometry of Grassmann manifolds GrK(H), of orthogonal projection manifolds PK(H)PK(H) and of Stiefel bundles St(K,H) is reviewed for infinite dimensional Hilbert spaces KK and HH. Given a loop of projections, we study Hamiltonians whose evolution generates a geometric phase, i.e. the holonomy of the loop. The simple case of geodesic loops is considered and the consistence of the geodesic holonomy group is discussed. This group agrees with the entire U(K)U(K) if HH is finite dimensional or if dim(K)≤dim(K⊥). In the remaining case we show that the holonomy group is contained in the unitary Fredholm group U∞(K)U∞(K) and that the geodesic holonomy group is dense in U∞(K)U∞(K).

ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Journal of Geometry and Physics - Volume 57, Issue 3, February 2007, Pages 777–797
نویسندگان
, ,