کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
1894696 1533742 2015 19 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
Marginally outer trapped surfaces in de Sitter space by low-dimensional geometries
کلمات کلیدی
موضوعات مرتبط
مهندسی و علوم پایه ریاضیات فیزیک ریاضی
پیش نمایش صفحه اول مقاله
Marginally outer trapped surfaces in de Sitter space by low-dimensional geometries
چکیده انگلیسی

A marginally outer trapped surface (MOTS) in de Sitter spacetime is an oriented spacelike surface whose mean curvature vector is proportional to one of the two null sections of its normal bundle. Associated with a spacelike immersed surface there are two enveloping maps into Möbius space (the conformal 3-sphere), which correspond to the two future-directed null directions of the surface normal planes. We give a description of MOTSs based on the Möbius geometry of their envelopes. We distinguish three cases according to whether both, one, or none of the fundamental forms in the normal null directions vanish. Special attention is given to MOTSs with non-zero parallel mean curvature vector. It is shown that any such a surface is generically the central sphere congruence (conformal Gauss map) of a surface in Möbius space which is locally Möbius equivalent to a non-zero constant mean curvature surface in some space form subgeometry.

ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Journal of Geometry and Physics - Volume 96, October 2015, Pages 168–186
نویسندگان
, ,