کد مقاله | کد نشریه | سال انتشار | مقاله انگلیسی | نسخه تمام متن |
---|---|---|---|---|
1894758 | 1533752 | 2014 | 12 صفحه PDF | دانلود رایگان |
عنوان انگلیسی مقاله ISI
A Riemann-Roch theorem for the noncommutative two torus
دانلود مقاله + سفارش ترجمه
دانلود مقاله ISI انگلیسی
رایگان برای ایرانیان
موضوعات مرتبط
مهندسی و علوم پایه
ریاضیات
فیزیک ریاضی
پیش نمایش صفحه اول مقاله

چکیده انگلیسی
We prove the analogue of the Riemann-Roch formula for the noncommutative two torus Aθ=C(Tθ2) equipped with an arbitrary translation invariant complex structure and a Weyl factor represented by a positive element kâCâ(Tθ2). We consider a topologically trivial line bundle equipped with a general holomorphic structure and the corresponding twisted Dolbeault Laplacians. We define a spectral triple (Aθ,H,D) that encodes the twisted Dolbeault complex of Aθ and whose index gives the left hand side of the Riemann-Roch formula. Using Connes' pseudodifferential calculus and heat equation techniques, we explicitly compute the b2 terms of the asymptotic expansion of Tr(eâtD2). We find that the curvature term on the right hand side of the Riemann-Roch formula coincides with the scalar curvature of the noncommutative torus recently defined and computed in Connes and Moscovici (2014) and independently computed in Fathizadeh and Khalkhali (2014).
ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Journal of Geometry and Physics - Volume 86, December 2014, Pages 19-30
Journal: Journal of Geometry and Physics - Volume 86, December 2014, Pages 19-30
نویسندگان
Masoud Khalkhali, Ali Moatadelro,