کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
1894928 1044257 2011 11 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
On the geometry of multi-Dirac structures and Gerstenhaber algebras
موضوعات مرتبط
مهندسی و علوم پایه ریاضیات فیزیک ریاضی
پیش نمایش صفحه اول مقاله
On the geometry of multi-Dirac structures and Gerstenhaber algebras
چکیده انگلیسی

In a companion paper, we introduced a notion of multi-Dirac structures, a graded version of Dirac structures, and we discussed their relevance for classical field theories. In the current paper we focus on the geometry of multi-Dirac structures. After recalling the basic definitions, we introduce a graded multiplication and a multi-Courant bracket on the space of sections of a multi-Dirac structure, so that the space of sections has the structure of a Gerstenhaber algebra. We then show that the graph of a kk-form on a manifold gives rise to a multi-Dirac structure and also that this multi-Dirac structure is integrable if and only if the corresponding form is closed. Finally, we show that the multi-Courant bracket endows a subset of the ring of differential forms with a graded Poisson bracket, and we relate this bracket to some of the multisymplectic brackets found in the literature.

ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Journal of Geometry and Physics - Volume 61, Issue 8, August 2011, Pages 1415–1425
نویسندگان
, , ,