کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
1894974 1044260 2010 21 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
The geometry of generating functions for a class of Hamiltonians in the noncompact case
موضوعات مرتبط
مهندسی و علوم پایه ریاضیات فیزیک ریاضی
پیش نمایش صفحه اول مقاله
The geometry of generating functions for a class of Hamiltonians in the noncompact case
چکیده انگلیسی

We consider a class of Hamiltonians H:T⋆Rn⟶RH:T⋆Rn⟶R and the related flows ϕHt:T⋆Rn⟶T⋆Rn, proving the existence and uniqueness of generating functions quadratic at infinity for its graph Λt=T∗Rn×ϕHt(T∗Rn). As a consequence, we obtain the same results for the Lagrangian submanifolds Lt≔ϕHt(L0)⊂T⋆Rn Hamiltonianly isotopic to the zero section L0≃RnL0≃Rn. This problem was also considered by Chaperon, Sikorav and Viterbo in the case of closed manifolds. The assumption on the class of Hamiltonians is an asymptotic behaviour of polynomial type on the phase space. In particular, we deal with a family of Hamiltonian systems arising from usual mechanical problems, for which we study the structure of the corresponding generating functions, showing their main analytical properties. The results presented in the paper are applied to prove the existence and uniqueness of minmax solutions for a class of Hamilton–Jacobi equations on T⋆RnT⋆Rn.

ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Journal of Geometry and Physics - Volume 60, Issue 10, October 2010, Pages 1381–1401
نویسندگان
, ,