کد مقاله | کد نشریه | سال انتشار | مقاله انگلیسی | نسخه تمام متن |
---|---|---|---|---|
1894985 | 1044260 | 2010 | 28 صفحه PDF | دانلود رایگان |

A moving frame formulation of non-stretching geometric curve flows in Euclidean space is used to derive a 1+1 dimensional hierarchy of integrable SO(3)SO(3)-invariant vector models containing the Heisenberg ferromagnetic spin model as well as a model given by a spin vector version of the mKdV equation. These models describe a geometric realization of the NLS hierarchy of soliton equations whose bi-Hamiltonian structure is shown to be encoded in the Frenet equations of the moving frame. This derivation yields an explicit bi-Hamiltonian structure, recursion operator, and constants of motion for each model in the hierarchy. A generalization of these results to geometric surface flows is presented, where the surfaces are non-stretching in one direction while stretching in all transverse directions. Through the Frenet equations of a moving frame, such surface flows are shown to encode a hierarchy of 2+1 dimensional integrable SO(3)SO(3)-invariant vector models, along with their bi-Hamiltonian structure, recursion operator, and constants of motion, describing a geometric realization of 2+1 dimensional bi-Hamiltonian NLS and mKdV soliton equations. Based on the well-known equivalence between the Heisenberg model and the Schrödinger map equation in 1+1 dimensions, a geometrical formulation of these hierarchies of 1+1 and 2+1 vector models is given in terms of dynamical maps into the 2-sphere. In particular, this formulation yields a new integrable generalization of the Schrödinger map equation in 2+1 dimensions as well as a mKdV analog of this map equation corresponding to the mKdV spin model in 1+1 and 2+1 dimensions.
Journal: Journal of Geometry and Physics - Volume 60, Issue 10, October 2010, Pages 1576–1603