کد مقاله | کد نشریه | سال انتشار | مقاله انگلیسی | نسخه تمام متن |
---|---|---|---|---|
1895023 | 1044265 | 2010 | 31 صفحه PDF | دانلود رایگان |
عنوان انگلیسی مقاله ISI
Superizations of Cahen-Wallach symmetric spaces and spin representations of the Heisenberg algebra
دانلود مقاله + سفارش ترجمه
دانلود مقاله ISI انگلیسی
رایگان برای ایرانیان
موضوعات مرتبط
مهندسی و علوم پایه
ریاضیات
فیزیک ریاضی
پیش نمایش صفحه اول مقاله

چکیده انگلیسی
Let M0=G0/H be a (n+1)-dimensional Cahen-Wallach Lorentzian symmetric space associated with a symmetric decomposition g0=h+m and let S(M0) be the spin bundle defined by the spin representation Ï:HâGLR(S) of the stabilizer H. This article studies the superizations of M0, i.e. its extensions to a homogeneous supermanifold M=G/H whose sheaf of superfunctions is isomorphic to Î(Sâ(M0)). Here, G is a Lie supergroup which is the superization of the Lie group G0 associated with a certain extension of the Lie algebra g0 to a Lie superalgebra g=g0¯+g1¯=g0+S, via the Kostant construction. The construction of the superization g consists of two steps: extending the spin representation Ï:hâglR(S) to a representation Ï:g0âglR(S) and constructing appropriate Ï(g0)-equivariant bilinear maps on S. Since the Heisenberg algebra heis is a codimension one ideal of the Cahen-Wallach Lie algebra g0, first we describe spin representations of heis and then determine their extensions to g0. There are two large classes of spin representations of heis and g0: the zero charge and the non-zero charge ones. The description strongly depends on the dimension n+1(mod8). Some general results about superizations g=g0¯+g1¯ are stated and examples are constructed.
ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Journal of Geometry and Physics - Volume 60, Issue 2, February 2010, Pages 295-325
Journal: Journal of Geometry and Physics - Volume 60, Issue 2, February 2010, Pages 295-325
نویسندگان
Andrea Santi,