کد مقاله | کد نشریه | سال انتشار | مقاله انگلیسی | نسخه تمام متن |
---|---|---|---|---|
1895312 | 1534007 | 2015 | 14 صفحه PDF | دانلود رایگان |
عنوان انگلیسی مقاله ISI
On the backward behavior of some dissipative evolution equations
ترجمه فارسی عنوان
در رفتار عقب مانده از معادلات تکاملی تحریک کننده
دانلود مقاله + سفارش ترجمه
دانلود مقاله ISI انگلیسی
رایگان برای ایرانیان
کلمات کلیدی
موضوعات مرتبط
مهندسی و علوم پایه
ریاضیات
ریاضیات کاربردی
چکیده انگلیسی
We prove that every solution of a KdV-Burgers-Sivashinsky type equation blows up in the energy space, backward in time, provided the solution does not belong to the global attractor. This is a phenomenon contrast to the backward behavior of the periodic 2D Navier-Stokes equations studied by Constantin et al. (1997), but analogous to the backward behavior of the Kuramoto-Sivashinsky equation discovered by Kukavica and Malcok (2005). Also we study the backward behavior of solutions to the damped driven nonlinear Schrödinger equation, the complex Ginzburg-Landau equation, and the hyperviscous Navier-Stokes equations. In addition, we provide some physical interpretation of various backward behaviors of several perturbations of the KdV equation by studying explicit cnoidal wave solutions. Furthermore, we discuss the connection between the backward behavior and the energy spectra of the solutions. The study of backward behavior of dissipative evolution equations is motivated by the investigation of the Bardos-Tartar conjecture on the Navier-Stokes equations stated in Bardos and Tartar (1973).
ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Physica D: Nonlinear Phenomena - Volume 306, 15 June 2015, Pages 34-47
Journal: Physica D: Nonlinear Phenomena - Volume 306, 15 June 2015, Pages 34-47
نویسندگان
Yanqiu Guo, Edriss S. Titi,