کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
1895331 1534010 2015 13 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
Nonlinear propagating localized modes in a 2D hexagonal crystal lattice
موضوعات مرتبط
مهندسی و علوم پایه ریاضیات ریاضیات کاربردی
پیش نمایش صفحه اول مقاله
Nonlinear propagating localized modes in a 2D hexagonal crystal lattice
چکیده انگلیسی
In this paper we consider a 2D hexagonal crystal lattice model first proposed by Marín, Eilbeck and Russell in 1998. We perform a detailed numerical study of nonlinear propagating localized modes, that is, propagating discrete breathers and kinks. The original model is extended to allow for arbitrary atomic interactions, and to allow atoms to travel out of the unit cell. A new on-site potential is considered with a periodic smooth function with hexagonal symmetry. We are able to confirm the existence of long-lived propagating discrete breathers. Our simulations show that, as they evolve, breathers appear to localize in frequency space, i.e. the energy moves from sidebands to a main frequency band. Our numerical findings shed light on the open question of whether exact moving breather solutions exist in 2D hexagonal layers in physical crystal lattices.
ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Physica D: Nonlinear Phenomena - Volumes 301–302, 1 May 2015, Pages 8-20
نویسندگان
, , ,