کد مقاله | کد نشریه | سال انتشار | مقاله انگلیسی | نسخه تمام متن |
---|---|---|---|---|
1896242 | 1044420 | 2012 | 22 صفحه PDF | دانلود رایگان |

The generating function of double Hurwitz numbers is known to become a tau function of the Toda hierarchy. The associated Lax and Orlov–Schulman operators turn out to satisfy a set of generalized string equations. These generalized string equations resemble those of c=1c=1 string theory except that the Orlov–Schulman operators are contained therein in an exponentiated form. These equations are derived from a set of intertwining relations for fermion bilinears in a two-dimensional free fermion system. The intertwiner is constructed from a fermionic counterpart of the cut-and-join operator. A classical limit of these generalized string equations is also obtained. The so-called Lambert curve emerges in a specialization of its solution. This seems to be another way of deriving the spectral curve of the random matrix approach to Hurwitz numbers.
Journal: Journal of Geometry and Physics - Volume 62, Issue 5, May 2012, Pages 1135–1156