کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
1896473 1044434 2011 16 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
Manifolds with parallel differential forms and Kähler identities for G2G2-manifolds
موضوعات مرتبط
مهندسی و علوم پایه ریاضیات فیزیک ریاضی
پیش نمایش صفحه اول مقاله
Manifolds with parallel differential forms and Kähler identities for G2G2-manifolds
چکیده انگلیسی

Let MM be a compact Riemannian manifold equipped with a parallel differential form ωω. We prove a version of the Kähler identities in this setting. This is used to show that the de Rham algebra of MM is weakly equivalent to its subquotient (Hc∗(M),d), called the pseudo-cohomology   of MM. When MM is compact and Kähler, and ωω is its Kähler form, (Hc∗(M),d) is isomorphic to the cohomology algebra of MM. This gives another proof of homotopy formality for Kähler manifolds, originally shown by Deligne, Griffiths, Morgan and Sullivan. We compute Hc∗(M) for a compact G2G2-manifold, showing that Hci(M)≅Hi(M) unless i=3,4i=3,4. For i=3,4i=3,4, we compute Hc∗(M) explicitly in terms of the first-order differential operator ∗d:Λ3(M)⟶Λ3(M).

ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Journal of Geometry and Physics - Volume 61, Issue 6, June 2011, Pages 1001–1016
نویسندگان
,