کد مقاله | کد نشریه | سال انتشار | مقاله انگلیسی | نسخه تمام متن |
---|---|---|---|---|
1896473 | 1044434 | 2011 | 16 صفحه PDF | دانلود رایگان |
عنوان انگلیسی مقاله ISI
Manifolds with parallel differential forms and Kähler identities for G2G2-manifolds
دانلود مقاله + سفارش ترجمه
دانلود مقاله ISI انگلیسی
رایگان برای ایرانیان
موضوعات مرتبط
مهندسی و علوم پایه
ریاضیات
فیزیک ریاضی
پیش نمایش صفحه اول مقاله

چکیده انگلیسی
Let MM be a compact Riemannian manifold equipped with a parallel differential form ωω. We prove a version of the Kähler identities in this setting. This is used to show that the de Rham algebra of MM is weakly equivalent to its subquotient (Hc∗(M),d), called the pseudo-cohomology of MM. When MM is compact and Kähler, and ωω is its Kähler form, (Hc∗(M),d) is isomorphic to the cohomology algebra of MM. This gives another proof of homotopy formality for Kähler manifolds, originally shown by Deligne, Griffiths, Morgan and Sullivan. We compute Hc∗(M) for a compact G2G2-manifold, showing that Hci(M)≅Hi(M) unless i=3,4i=3,4. For i=3,4i=3,4, we compute Hc∗(M) explicitly in terms of the first-order differential operator ∗d:Λ3(M)⟶Λ3(M).
ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Journal of Geometry and Physics - Volume 61, Issue 6, June 2011, Pages 1001–1016
Journal: Journal of Geometry and Physics - Volume 61, Issue 6, June 2011, Pages 1001–1016
نویسندگان
Misha Verbitsky,