کد مقاله | کد نشریه | سال انتشار | مقاله انگلیسی | نسخه تمام متن |
---|---|---|---|---|
1896689 | 1533777 | 2010 | 11 صفحه PDF | دانلود رایگان |

We investigate non-degenerate Lagrangians of the form ∫f(ux,uy,ut)dxdydt such that the corresponding Euler–Lagrange equations (fux)x+(fuy)y+(fut)t=0(fux)x+(fuy)y+(fut)t=0 are integrable by the method of hydrodynamic reductions. We demonstrate that the integrability conditions, which constitute an involutive over-determined system of fourth order PDEs for the Lagrangian density ff, are invariant under a 20-parameter group of Lie-point symmetries whose action on the moduli space of integrable Lagrangians has an open orbit. The density of the ‘master-Lagrangian’ corresponding to this orbit is shown to be a modular form in three variables defined on a complex hyperbolic ball. We demonstrate how the knowledge of the symmetry group allows one to linearize the integrability conditions.
Journal: Journal of Geometry and Physics - Volume 60, Issues 6–8, June–August 2010, Pages 896–906