کد مقاله | کد نشریه | سال انتشار | مقاله انگلیسی | نسخه تمام متن |
---|---|---|---|---|
1896848 | 1044461 | 2008 | 22 صفحه PDF | دانلود رایگان |

Using as an underlying manifold an alpha-Sasakian manifold, we introduce warped product Kähler manifolds. We prove that if the underlying manifold is an alpha-Sasakian space form, then the corresponding Kähler manifold is of quasi-constant holomorphic sectional curvatures with a special distribution. Conversely, we prove that any Kähler manifold of quasi-constant holomorphic sectional curvatures with a special distribution locally has the structure of a warped product Kähler manifold whose base is an alpha-Sasakian space form. As an application, we describe explicitly all Bochner–Kähler metrics of quasi-constant holomorphic sectional curvatures. We find four families of complete metrics of this type. As a consequence, we obtain Bochner–Kähler metrics generated by a potential function of distance in complex Euclidean space and of time-like distance in the flat Kähler–Lorentz space.
Journal: Journal of Geometry and Physics - Volume 58, Issue 7, July 2008, Pages 803–824