کد مقاله | کد نشریه | سال انتشار | مقاله انگلیسی | نسخه تمام متن |
---|---|---|---|---|
1896904 | 1044466 | 2008 | 14 صفحه PDF | دانلود رایگان |
عنوان انگلیسی مقاله ISI
Zeta functions that hear the shape of a Riemann surface
دانلود مقاله + سفارش ترجمه
دانلود مقاله ISI انگلیسی
رایگان برای ایرانیان
موضوعات مرتبط
مهندسی و علوم پایه
ریاضیات
فیزیک ریاضی
پیش نمایش صفحه اول مقاله

چکیده انگلیسی
To a compact hyperbolic Riemann surface, we associate a finitely summable spectral triple whose underlying topological space is the limit set of a corresponding Schottky group, and whose “Riemannian” aspect (Hilbert space and Dirac operator) encode the boundary action through its Patterson–Sullivan measure. We prove that the ergodic rigidity theorem for this boundary action implies that the zeta functions of the spectral triple suffice to characterize the (anti-)complex isomorphism class of the corresponding Riemann surface. Thus, you can hear the complex analytic shape of a Riemann surface, by listening to a suitable spectral triple.
ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Journal of Geometry and Physics - Volume 58, Issue 5, May 2008, Pages 619–632
Journal: Journal of Geometry and Physics - Volume 58, Issue 5, May 2008, Pages 619–632
نویسندگان
Gunther Cornelissen, Matilde Marcolli,