کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
1897233 1044502 2008 27 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
Hopf saddle-node bifurcation for fixed points of 3D-diffeomorphisms: Analysis of a resonance ‘bubble’
موضوعات مرتبط
مهندسی و علوم پایه ریاضیات ریاضیات کاربردی
پیش نمایش صفحه اول مقاله
Hopf saddle-node bifurcation for fixed points of 3D-diffeomorphisms: Analysis of a resonance ‘bubble’
چکیده انگلیسی

The dynamics near a Hopf saddle-node bifurcation of fixed points of diffeomorphisms is analysed by means of a case study: a two-parameter model map GG is constructed, such that at the central bifurcation the derivative has two complex conjugate eigenvalues of modulus one and one real eigenvalue equal to 1. To investigate the effect of resonances, the complex eigenvalues are selected to have a 1:5 resonance. It is shown that, near the origin of the parameter space, the family GG has two secondary Hopf saddle-node bifurcations of period five points. A cone-like structure exists in the neighbourhood, formed by two surfaces of saddle-node and a surface of Hopf bifurcations. Quasi-periodic bifurcations of an invariant circle, forming a frayed boundary, are numerically shown to occur in model GG. Along such Cantor-like boundary, an intricate bifurcation structure is detected near a 1:5 resonance gap. Subordinate quasi-periodic bifurcations are found nearby, suggesting the occurrence of a cascade of quasi-periodic bifurcations.

ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Physica D: Nonlinear Phenomena - Volume 237, Issue 13, 1 August 2008, Pages 1773–1799
نویسندگان
, , ,