کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
1897289 1044512 2008 14 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
Analysis of the T-point-Hopf bifurcation
کلمات کلیدی
موضوعات مرتبط
مهندسی و علوم پایه ریاضیات ریاضیات کاربردی
پیش نمایش صفحه اول مقاله
Analysis of the T-point-Hopf bifurcation
چکیده انگلیسی

In a parameterized three-dimensional system of autonomous differential equations, a T-point is a point of the parameter space where a special kind of codimension-2 heteroclinic cycle occurs. If the parameter space is three-dimensional, such a bifurcation is located generically on a curve. A more degenerate scenario appears when this curve reaches a surface of Hopf bifurcations of one of the equilibria involved in the heteroclinic cycle. We are interested in the analysis of this codimension-3 bifurcation, which we call T-point-Hopf. In this work we propose a model, based on the construction of a Poincaré map, that describes the global behavior close to a T-point-Hopf bifurcation. The existence of certain kinds of homoclinic and heteroclinic connections between equilibria and/or periodic orbits is proved. The predictions deduced from this model strongly agree with the numerical results obtained in a modified van der Pol–Duffing electronic oscillator.

ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Physica D: Nonlinear Phenomena - Volume 237, Issue 3, March 2008, Pages 292–305
نویسندگان
, , ,