کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
1897621 1044556 2006 13 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
Instabilities of one-dimensional trivial-phase solutions of the two-dimensional cubic nonlinear Schrödinger equation
موضوعات مرتبط
مهندسی و علوم پایه ریاضیات ریاضیات کاربردی
پیش نمایش صفحه اول مقاله
Instabilities of one-dimensional trivial-phase solutions of the two-dimensional cubic nonlinear Schrödinger equation
چکیده انگلیسی
The two-dimensional cubic nonlinear Schrödinger equation (NLS) is used as a model of a wide variety of physical phenomena. In this paper, we study the stability of a class of its one-dimensional, periodic, traveling-wave solutions. First, we establish that all such solutions are unstable with respect to two-dimensional perturbations with long wavelengths in the transverse dimension. Second, we establish that all such solutions are unstable with respect to two-dimensional perturbations with arbitrarily short wavelengths if the coefficients of the linear dispersion terms in the NLS have opposite signs. Both arguments rely on formal perturbation methods. Third, we use the Fourier-Floquet-Hill numerical method to examine the spectral stability problem. We present detailed spectra for twelve different solutions and demonstrate strong agreement between the numerical and asymptotic results.
ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Physica D: Nonlinear Phenomena - Volume 214, Issue 1, 1 February 2006, Pages 42-54
نویسندگان
, ,