کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
1897718 1044569 2011 14 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
Continuation of periodic solutions in the waveguide array mode-locked laser
موضوعات مرتبط
مهندسی و علوم پایه ریاضیات ریاضیات کاربردی
پیش نمایش صفحه اول مقاله
Continuation of periodic solutions in the waveguide array mode-locked laser
چکیده انگلیسی

We apply the adjoint continuation method to construct highly accurate, periodic solutions that are observed to play a critical role in the multi-pulsing transition of mode-locked laser cavities. The method allows for the construction of solution branches and the identification of their bifurcation structure. Supplementing the adjoint continuation method with a computation of the Floquet multipliers allows for explicit determination of the stability of each branch. This method reveals that, when gain is increased, the multi-pulsing transition starts with a Hopf bifurcation, followed by a period-doubling bifurcation, and a saddle–node bifurcation for limit cycles. Finally, the system exhibits chaotic dynamics and transitions to the double-pulse solutions. Although this method is applied specifically to the waveguide array mode-locking model, the multi-pulsing transition is conjectured to be ubiquitous and these results agree with experimental and computational results from other models.


► Studied the multi-pulsing transition in mode-locked waveguide array lasers.
► Tracked branches of periodic solutions with the adjoint continuation method.
► Explicit computation of the limit cycle bifurcations with the monodromy matrix.
► Good agreement with previous low-dimensional and experimental models.

ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Physica D: Nonlinear Phenomena - Volume 240, Issue 22, 1 November 2011, Pages 1791–1804
نویسندگان
, , , ,