کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
1897762 1044575 2008 12 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
The derivative nonlinear Schrödinger equation on the half-line
موضوعات مرتبط
مهندسی و علوم پایه ریاضیات ریاضیات کاربردی
پیش نمایش صفحه اول مقاله
The derivative nonlinear Schrödinger equation on the half-line
چکیده انگلیسی

We analyze the derivative nonlinear Schrödinger equation iqt+qxx=i(|q|2q)x on the half-line using the Fokas method. Assuming that the solution q(x,t)q(x,t) exists, we show that it can be represented in terms of the solution of a matrix Riemann–Hilbert problem formulated in the plane of the complex spectral parameter ζζ. The jump matrix has explicit x,tx,t dependence and is given in terms of the spectral functions a(ζ)a(ζ), b(ζ)b(ζ) (obtained from the initial data q0(x)=q(x,0)q0(x)=q(x,0)) as well as A(ζ)A(ζ), B(ζ)B(ζ) (obtained from the boundary values g0(t)=q(0,t)g0(t)=q(0,t) and g1(t)=qx(0,t)g1(t)=qx(0,t)). The spectral functions are not independent, but related by a compatibility condition, the so-called global relation. Given initial and boundary values {q0(x),g0(t),g1(t)}{q0(x),g0(t),g1(t)} such that there exist spectral functions satisfying the global relation, we show that the function q(x,t)q(x,t) defined by the above Riemann–Hilbert problem exists globally and solves the derivative nonlinear Schrödinger equation with the prescribed initial and boundary values.

ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Physica D: Nonlinear Phenomena - Volume 237, Issue 23, 1 December 2008, Pages 3008–3019
نویسندگان
,