کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
1897823 1044591 2008 12 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
A universal separatrix map for weak interactions of solitary waves in generalized nonlinear Schrödinger equations
موضوعات مرتبط
مهندسی و علوم پایه ریاضیات ریاضیات کاربردی
پیش نمایش صفحه اول مقاله
A universal separatrix map for weak interactions of solitary waves in generalized nonlinear Schrödinger equations
چکیده انگلیسی

It is known that weak interactions of two solitary waves in generalized nonlinear Schrödinger (NLS) equations exhibit fractal dependence on initial conditions, and the dynamics of these interactions is governed by a universal two-degree-of-freedom ODE system [Y. Zhu J. Yang, Universal fractal structures in the weak interaction of solitary waves in generalized nonlinear Schrödinger equations, Phys. Rev. E 75 (2007) 036605]. In this paper, this ODE system is analyzed comprehensively. Using asymptotic methods along separatrix orbits, a simple second-order map is derived. This map does not have any free parameters after variable rescalings, and thus is universal for all weak interactions of solitary waves in generalized NLS equations. Comparison between this map’s predictions and direct simulations of the ODE system shows that the map can capture the fractal-scattering phenomenon of the ODE system very well both qualitatively and quantitatively.

ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Physica D: Nonlinear Phenomena - Volume 237, Issue 19, 1 October 2008, Pages 2411–2422
نویسندگان
, , ,