کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
1897824 1044591 2008 13 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
Asymptotic description of solitary wave trains in fully nonlinear shallow-water theory
موضوعات مرتبط
مهندسی و علوم پایه ریاضیات ریاضیات کاربردی
پیش نمایش صفحه اول مقاله
Asymptotic description of solitary wave trains in fully nonlinear shallow-water theory
چکیده انگلیسی

We derive an asymptotic formula for the amplitude distribution in a fully nonlinear shallow-water solitary wave train which is formed as the long-time outcome of the initial-value problem for the Su–Gardner (or one-dimensional Green–Naghdi) system. Our analysis is based on the properties of the characteristics of the associated Whitham modulation system which describes an intermediate “undular bore” stage of the evolution. The resulting formula represents a “non-integrable” analogue of the well-known semi-classical distribution for the Korteweg–de Vries equation, which is usually obtained through the inverse scattering transform. Our analytical results are shown to agree with the results of direct numerical simulations of the Su–Gardner system. Our analysis can be generalised to other weakly dispersive, fully nonlinear systems which are not necessarily completely integrable.

ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Physica D: Nonlinear Phenomena - Volume 237, Issue 19, 1 October 2008, Pages 2423–2435
نویسندگان
, , ,