کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
1897875 1534069 2008 49 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
Galloping instability of viscous shock waves
کلمات کلیدی
موضوعات مرتبط
مهندسی و علوم پایه ریاضیات ریاضیات کاربردی
پیش نمایش صفحه اول مقاله
Galloping instability of viscous shock waves
چکیده انگلیسی

Motivated by physical and numerical observations of time oscillatory “galloping”, “spinning”, and “cellular” instabilities of detonation waves, we study Poincaré–Hopf bifurcation of traveling-wave solutions of viscous conservation laws. The main difficulty is the absence of a spectral gap between oscillatory modes and essential spectrum, preventing standard reduction to a finite-dimensional center manifold. We overcome this by direct Lyapunov–Schmidt reduction, using detailed pointwise bounds on the linearized solution operator to carry out a nonstandard implicit function construction in the absence of a spectral gap. The key computation is a space-time stability estimate on the transverse linearized solution operator reminiscent of Duhamel estimates carried out on the full solution operator in the study of nonlinear stability of spectrally stable traveling waves.

ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Physica D: Nonlinear Phenomena - Volume 237, Issues 10–12, 15 July 2008, Pages 1553–1601
نویسندگان
, ,