کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
1898440 1533741 2015 10 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
Classification of commutator algebras leading to the new type of closed Baker–Campbell–Hausdorff formulas
موضوعات مرتبط
مهندسی و علوم پایه ریاضیات فیزیک ریاضی
پیش نمایش صفحه اول مقاله
Classification of commutator algebras leading to the new type of closed Baker–Campbell–Hausdorff formulas
چکیده انگلیسی

We show that there are 13 types of commutator algebras leading to the new closed forms of the Baker–Campbell–Hausdorff (BCH) formula exp(X)exp(Y)exp(Z)=exp(AX+BZ+CY+DI),exp(X)exp(Y)exp(Z)=exp(AX+BZ+CY+DI), derived in Matone (2015). This includes, as a particular case, exp(X)exp(Z)exp(X)exp(Z), with [X,Z][X,Z] containing other elements in addition to XX and ZZ. The algorithm exploits the associativity of the BCH formula and is based on the decomposition exp(X)exp(Y)exp(Z)=exp(X)exp(αY)exp((1−α)Y)exp(Z)exp(X)exp(Y)exp(Z)=exp(X)exp(αY)exp((1−α)Y)exp(Z), with αα fixed in such a way that it reduces to exp(X̃)exp(Ỹ), with X̃ and Ỹ satisfying the Van-Brunt and Visser condition [X̃,Ỹ]=ũX̃+ṽỸ+c̃I. It turns out that eαeα satisfies, in the generic case, an algebraic equation whose exponents depend on the parameters defining the commutator algebra. In nine types   of commutator algebras, such an equation leads to rational solutions for αα. We find all the equations that characterize the solution of the above decomposition problem by combining it with the Jacobi identity.

ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Journal of Geometry and Physics - Volume 97, November 2015, Pages 34–43
نویسندگان
,