کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
1898476 1533747 2015 13 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
Tanaka structures (non holonomic GG-structures) and Cartan connections
موضوعات مرتبط
مهندسی و علوم پایه ریاضیات فیزیک ریاضی
پیش نمایش صفحه اول مقاله
Tanaka structures (non holonomic GG-structures) and Cartan connections
چکیده انگلیسی

Let h=h−k⊕⋯⊕hlh=h−k⊕⋯⊕hl (k>0k>0, l≥0l≥0) be a finite dimensional graded Lie algebra, with a Euclidean metric 〈⋅,⋅〉〈⋅,⋅〉 adapted to the gradation. The metric 〈⋅,⋅〉〈⋅,⋅〉 is called admissible if the codifferentials ∂∗:Ck+1(h−,h)→Ck(h−,h)∂∗:Ck+1(h−,h)→Ck(h−,h) (k≥0k≥0) are QQ-invariant (Lie(Q)=h0⊕h+). We find necessary and sufficient conditions for a Euclidean metric, adapted to the gradation, to be admissible, and we develop a theory of normal Cartan connections, when these conditions are satisfied. We show how the treatment from Cap and Slovak (2009), about normal Cartan connections of semisimple type, fits into our theory. We also consider in detail the case when h≔t∗(g)h≔t∗(g) is the cotangent Lie algebra of a non-positively graded Lie algebra gg.

ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Journal of Geometry and Physics - Volume 91, May 2015, Pages 88–100
نویسندگان
, ,