کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
1898564 1533765 2013 17 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
Sasaki–Einstein and paraSasaki–Einstein metrics from (κ,μ)(κ,μ)-structures
موضوعات مرتبط
مهندسی و علوم پایه ریاضیات فیزیک ریاضی
پیش نمایش صفحه اول مقاله
Sasaki–Einstein and paraSasaki–Einstein metrics from (κ,μ)(κ,μ)-structures
چکیده انگلیسی

We prove that every contact metric (κ,μ)(κ,μ)-space admits a canonical ηη-Einstein Sasakian or ηη-Einstein paraSasakian metric. An explicit expression for the curvature tensor fields of those metrics is given and we find the values of κκ and μμ for which such metrics are Sasaki–Einstein and paraSasaki–Einstein. Conversely, we prove that, under some natural assumptions, a K-contact or K-paracontact manifold foliated by two mutually orthogonal, totally geodesic Legendre foliations admits a contact metric (κ,μ)(κ,μ)-structure. Furthermore, we apply the above results to the geometry of tangent sphere bundles and we discuss some geometric properties of (κ,μ)(κ,μ)-spaces related to the existence of Einstein–Weyl and Lorentzian–Sasaki–Einstein structures.

ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Journal of Geometry and Physics - Volume 73, November 2013, Pages 20–36
نویسندگان
, , ,