کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
1898680 1044757 2011 12 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
Solutions of the Yang–Baxter equations on quadratic Lie groups: The case of oscillator groups
موضوعات مرتبط
مهندسی و علوم پایه ریاضیات فیزیک ریاضی
پیش نمایش صفحه اول مقاله
Solutions of the Yang–Baxter equations on quadratic Lie groups: The case of oscillator groups
چکیده انگلیسی

A Lie group is called quadratic if it carries a bi-invariant semi-Riemannian metric. Oscillator Lie groups constitute a subclass of the class of quadratic Lie groups. In this paper, we determine the Lie bialgebra structures and the solutions of the classical Yang–Baxter equation on a generic class of oscillator Lie algebras. Moreover, we show that any solution of the generalized classical Yang–Baxter equation (resp. classical Yang–Baxter equation) on a quadratic Lie group determines a left invariant locally symmetric (resp. flat) semi-Riemannian metric on the corresponding dual Lie groups.


► A Lie group with a bi-invariant semi-Riemannian metric is called quadratique.
► A solution of the CYBE on a quadratique Lie group defines a flat metric on the dual.
► A generalized solution determines a locally symmetric metric on the dual.
► Lie bi-algebra structures on generic oscillator Lie algebras are determined.

ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Journal of Geometry and Physics - Volume 61, Issue 12, December 2011, Pages 2309–2320
نویسندگان
, ,