کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
1898688 1044757 2011 10 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
Lie algebra structures for four-component Hamiltonian hydrodynamic type systems
کلمات کلیدی
موضوعات مرتبط
مهندسی و علوم پایه ریاضیات فیزیک ریاضی
پیش نمایش صفحه اول مقاله
Lie algebra structures for four-component Hamiltonian hydrodynamic type systems
چکیده انگلیسی

Four-component Hamiltonian systems of hydrodynamic type induce, through the Haantjes tensor, a Lie algebra structure on tangent planes in the space of dependent variables. We show that this Lie algebra is either reductive or solvable with a nilpotent three-dimensional subalgebra. We demonstrate how the precise Lie algebraic structure is determined by the Hamiltonian structure of the system. An application to perturbations of the Benney system is presented.


► Hamiltonian systems of hydrodynamic type appear in diverse physical, biological, and geometric settings.
► For Hamiltonian systems consisting of four equations, there is associated a natural Lie algebra structure.
► In the present work, this Lie algebra structure is classified.
► An application to a physical example is presented.

ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Journal of Geometry and Physics - Volume 61, Issue 12, December 2011, Pages 2400–2409
نویسندگان
, ,