کد مقاله | کد نشریه | سال انتشار | مقاله انگلیسی | نسخه تمام متن |
---|---|---|---|---|
1898795 | 1044780 | 2009 | 8 صفحه PDF | دانلود رایگان |
عنوان انگلیسی مقاله ISI
Graphic Bernstein results in curved pseudo-Riemannian manifolds
دانلود مقاله + سفارش ترجمه
دانلود مقاله ISI انگلیسی
رایگان برای ایرانیان
کلمات کلیدی
موضوعات مرتبط
مهندسی و علوم پایه
ریاضیات
فیزیک ریاضی
پیش نمایش صفحه اول مقاله

چکیده انگلیسی
We generalize a Bernstein-type result due to Albujer and AlÃas, for maximal surfaces in a curved Lorentzian product 3-manifold of the form Σ1ÃR, to higher dimension and codimension. We consider M a complete spacelike graphic submanifold with parallel mean curvature, defined by a map f:Σ1âΣ2 between two Riemannian manifolds (Σ1m,g1) and (Σ2n,g2) of sectional curvatures K1 and K2, respectively. We take on Σ1ÃΣ2 the pseudo-Riemannian product metric g1âg2. Under the curvature conditions, Ricci1â¥0 and K1â¥K2, we prove that, if the second fundamental form of M satisfies an integrability condition, then M is totally geodesic, and it is a slice if Ricci1(p)>0 at some point. For bounded K1, K2 and hyperbolic angle θ, we conclude that M must be maximal. If M is a maximal surface and K1â¥K2+, we show M is totally geodesic with no need for further assumptions. Furthermore, M is a slice if at some point pâΣ1, K1(p)>0, and if Σ1 is flat and K2<0 at some point f(p), then the image of f lies on a geodesic of Σ2.
ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Journal of Geometry and Physics - Volume 59, Issue 9, September 2009, Pages 1306-1313
Journal: Journal of Geometry and Physics - Volume 59, Issue 9, September 2009, Pages 1306-1313
نویسندگان
Guanghan Li, Isabel Salavessa,