کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
1898804 1044783 2009 27 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
Computing the Maslov index of solitary waves, Part 1: Hamiltonian systems on a four-dimensional phase space
موضوعات مرتبط
مهندسی و علوم پایه ریاضیات ریاضیات کاربردی
پیش نمایش صفحه اول مقاله
Computing the Maslov index of solitary waves, Part 1: Hamiltonian systems on a four-dimensional phase space
چکیده انگلیسی

When solitary waves are characterized as homoclinic orbits of a finite-dimensional Hamiltonian system, they have an integer-valued topological invariant, the Maslov index. We develop a new robust numerical algorithm to compute the Maslov index, to understand its properties, and to study the implications for the stability of solitary waves. The algorithm reported here is developed in the exterior algebra representation, which leads to a fast algorithm with some novel properties. New results on the Maslov index for solitary wave solutions of reaction-diffusion equations, the fifth-order Korteweg–de Vries equation, and the long-wave–short-wave resonance equations are presented. Part 1 considers the case of a four-dimensional phase space, and Part 2 considers the case of a 2n2n-dimensional phase space with n>2n>2.

ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Physica D: Nonlinear Phenomena - Volume 238, Issue 18, September 2009, Pages 1841–1867
نویسندگان
, , ,