کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
1898851 1044789 2008 19 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
Variational equations on mixed Riemannian–Lorentzian metrics
کلمات کلیدی
موضوعات مرتبط
مهندسی و علوم پایه ریاضیات فیزیک ریاضی
پیش نمایش صفحه اول مقاله
Variational equations on mixed Riemannian–Lorentzian metrics
چکیده انگلیسی

A class of elliptic–hyperbolic equations is placed in the context of a geometric variational theory, in which the change of type is viewed as a change in the character of an underlying metric. A fundamental example of a metric which changes in this way is the extended projective disc, which is Riemannian at ordinary points, Lorentzian at ideal points, and singular on the absolute. Harmonic fields on such a metric can be interpreted as the hodograph image of extremal surfaces in Minkowski 3-space. This suggests an approach to generalized Plateau problems in three-dimensional space-time via Hodge theory on the extended projective disc. Analogous variational problems arise on Riemannian–Lorentzian flow metrics in fiber bundles (twisted nonlinear Hodge equations), and on certain Riemannian–Lorentzian manifolds which occur in relativity and quantum cosmology. The examples surveyed come with natural gauge theories and Hodge dualities. This paper is mainly a review, but some technical extensions are proven.

ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Journal of Geometry and Physics - Volume 58, Issue 8, August 2008, Pages 1043–1061
نویسندگان
,