کد مقاله | کد نشریه | سال انتشار | مقاله انگلیسی | نسخه تمام متن |
---|---|---|---|---|
1899071 | 1044831 | 2006 | 31 صفحه PDF | دانلود رایگان |

This is a survey of our results on the relation between perturbative renormalization and motivic Galois theory. The main result is that all quantum field theories share a common universal symmetry realized as a motivic Galois group, whose action is dictated by the divergences and generalizes that of the renormalization group. The existence of such a group was conjectured by P. Cartier based on number theoretic evidence and on the Connes-Kreimer theory of perturbative renormalization. The group provides a universal formula for counterterms and is obtained via a Riemann-Hilbert correspondence classifying equivalence classes of flat equisingular bundles, where the equisingularity condition corresponds to the independence of the counterterms on the mass scale.
Journal: Journal of Geometry and Physics - Volume 56, Issue 1, January 2006, Pages 55–85