کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
1899880 1045168 2009 12 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
On the asymptotic behavior of average energy and enstrophy in 3D turbulent flows
موضوعات مرتبط
مهندسی و علوم پایه ریاضیات ریاضیات کاربردی
پیش نمایش صفحه اول مقاله
On the asymptotic behavior of average energy and enstrophy in 3D turbulent flows
چکیده انگلیسی

Rigorous upper and lower bounds are proved for the Taylor and the Kolmogorov wavenumbers for the three-dimensional space periodic Navier–Stokes equations. Under the assumption that Kolmogorov’s two-thirds power law holds, the bounds sharpen to κT∼Gr1/4 and κϵ∼Gr3/8 respectively, where Gr is the Grashof number. This provides a rigorous proof that the power law implies (1) the energy cascade, (2) Kolmogorov dissipation law, and (3) a connection between κTκT and κϵκϵ. The portion of phase space where a key a priori estimate on the nonlinear term is sharp is shown to be significant by means of a lower bound on any probability measure associated with an infinite-time average.

ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Physica D: Nonlinear Phenomena - Volume 238, Issue 7, 15 April 2009, Pages 725–736
نویسندگان
, , ,