کد مقاله | کد نشریه | سال انتشار | مقاله انگلیسی | نسخه تمام متن |
---|---|---|---|---|
1971996 | 1538996 | 2016 | 4 صفحه PDF | دانلود رایگان |
Whether passerines collectively have a higher mean mass-independent basal rate of metabolism than the mean of other birds has been controversial. The conclusion that no difference exists was based on phylogenetic analyses. Higher basal rates, however, have been repeatedly seen in passerines and demonstrated by ANCOVA analyses. Several studies indicated that the mean mass-independent basal rate of passerines is > 30% higher than the collective mean of other birds. Yet, at least three non-passerine orders of 25 have mean mass-independent basal rates equal to that of passerines. They are Anseriformes, Charadriiformes, and Procellariiformes, all characterized by an active lifestyle, including migratory and pelagic habits. In contrast, sedentary ducks endemic to islands have low basal rates. The high basal rates in temperate passerines correlate with migratory habits and life in cool to cold environments, the absence of these factors being partly responsible for the lower basal rates in most tropical passerines. The principal difference in energetics among non-passerines, between passerines and most non-passerines, and among passerines reflects the frequency of habits associated with high or low mass-independent energy expenditures, the habits correlating with body composition.The mean mass-independent basal rate in tropical passerines is slightly lower than in temperate passerines which implies that the collective mean in passerines would be somewhat lower if tropical passerines were included in proportion to their diversity. However, their inclusion will not eliminate the difference presently seen between passerines and other birds because the difference between tropical and temperate passerines is less than that between passerines and other birds.
Journal: Comparative Biochemistry and Physiology Part A: Molecular & Integrative Physiology - Volume 191, January 2016, Pages 152–155