کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
2008917 1541767 2016 9 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
Survey of organophosphate resistance and an Ala216Ser substitution of acetylcholinesterase-1 gene associated with chlorpyrifos resistance in Apolygus lucorum (Meyer-Dür) collected from the transgenic Bt cotton fields in China
موضوعات مرتبط
علوم زیستی و بیوفناوری علوم کشاورزی و بیولوژیک علوم زراعت و اصلاح نباتات
پیش نمایش صفحه اول مقاله
Survey of organophosphate resistance and an Ala216Ser substitution of acetylcholinesterase-1 gene associated with chlorpyrifos resistance in Apolygus lucorum (Meyer-Dür) collected from the transgenic Bt cotton fields in China
چکیده انگلیسی

The mirid bug is frequently controlled by the application of organophosphorus insecticides in the transgenic Bt cotton field of China. A topical bioassay method was performed to evaluate the toxicities of chlorpyrifos and malathion towards field-collected Chinese populations of Apolygus lucorum from transgenic Bt cotton fields. For chlorpyrifos, the resistance ratios ranged from 0.8 to 9.4-fold compared to a susceptible strain. For malathion, the resistance levels relative to the susceptible strain ranged from 1.2 to 14.4-fold. Compared to a susceptible strain, the Cangzhou population from Hebei province showed the highest resistance ratios towards these insecticides. A comparison of the detoxifying and target enzyme activities between the Cangzhou population and a susceptible strain revealed that altered acetylcholinesterase possibly account for the chlorpyrifos and malathion resistance in the Cangzhou population. Two acetylcholinesterase (AChE-encoding) genes (designated Alace1 and Alace2) from the green mirid bug (A. lucorum) were identified. The Alace1 and Alace2 genes encoded 597 and 645 amino acids, respectively. Both AChE proteins had conserved motifs including a catalytic triad, a choline-binding site, and an acyl pocket. Quantitative real-time PCR analysis showed that Alace1 had a much higher transcriptional level than Alace2, for the expression profiles of both spatial and time distributions. One amino acid substitution, Ala216Ser in Alace1, was found in the Cangzhou population. These results suggest that the mutation Ala216Ser should be most likely involved in organophosphorus resistance in A. lucorum.

ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Pesticide Biochemistry and Physiology - Volume 132, September 2016, Pages 29–37
نویسندگان
, , , ,