کد مقاله | کد نشریه | سال انتشار | مقاله انگلیسی | نسخه تمام متن |
---|---|---|---|---|
2009483 | 1066668 | 2012 | 8 صفحه PDF | دانلود رایگان |

Warfarin is commonly used worldwide as a rodenticide. It inhibits blood coagulation by inhibiting vitamin K 2,3-epoxide reductase (VKOR) activity leading to hemorrhage. However, it has been reported that repeated or long-term treatment with warfarin results in resistance emerging in wild rodents. Such resistance may explain why it is difficult to control rodents in many regions in Japan. In this report, we studied mutations in the VKOR gene (including the VKOR complex subunit 1 (VKORC1)), while also analyzing VKOR and clotting factor activity in black rats (Rattus rattus) in order to understand better the mechanism of warfarin resistance in this species.We sequenced the VKORC1 gene from 275 rats living in the wild in Japan. We found several types of novel base substitutions, some of which conferred warfarin resistance.There was no difference in coagulation times between warfarin-sensitive and resistant rats measured under physiological conditions. However, after warfarin administration, no effect was noted in warfarin-resistant rats, although a prolonged coagulation time was noted in warfarin-sensitive rats.We also determined the kinetic differences in hepatic microsomal VKOR-dependent activity between warfarin-resistant and sensitive rats. Warfarin-resistant rats showed 2–3-fold lower Vmax/Km values than did sensitive rats. In addition, we report that resistant rats found in the Tokyo area had a VKOR activity which was poorly inhibited by warfarin.Finally, we conclude that reduced VKOR activity and warfarin resistance in the Japanese black rat might be due to mutations in the VKORC1 gene. However, further study is needed to clarify how such rats can maintain adequate vitamin K-dependent clotting factor levels, while simultaneously exhibiting low VKOR activity and warfarin resistance.
Figure optionsDownload as PowerPoint slideHighlights
► Japanese wild black rats had 10 pattern mutations of VKORC1 and 5 mutations exhibited warfarin resistance.
► Japanese warfarin-resistant rats showed lower Vmax/Km in VKOR than sensitive rats.
► VKOR activity in warfarin-resistant rats was poorly inhibited by warfarin.
► The molecular distance between VKOR and warfarin was longer in resistant rats than sensitive rats.
Journal: Pesticide Biochemistry and Physiology - Volume 103, Issue 2, June 2012, Pages 144–151