کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
2024883 1542626 2013 9 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
N-driven changes in a plant community affect leaf-litter traits and may delay organic matter decomposition in a Mediterranean maquis
موضوعات مرتبط
علوم زیستی و بیوفناوری علوم کشاورزی و بیولوژیک دانش خاک شناسی
پیش نمایش صفحه اول مقاله
N-driven changes in a plant community affect leaf-litter traits and may delay organic matter decomposition in a Mediterranean maquis
چکیده انگلیسی

Organic matter (OM) decomposition is typically controlled by climate, soil properties, litter quality and soil microorganisms. Availability of nitrogen (N) also influences decomposition, but its effects on decomposition are controversial and most studies have only addressed decomposition of individual plant species grown under high N availability. We experimentally manipulated the dose of available N in a Mediterranean Basin maquis in south-western Europe, with low ambient N deposition (5.2 kg N ha−1 yr−1) and low soil N content (0.1%). N availability was modified by the addition of 40 and 80 kg N ha−1 yr−1 as NH4NO3. Control plots were not fertilized. After 2.5 years of N additions, we accounted for the integrated effects of N enrichment on litter decomposability taking into consideration the N-driven changes in the whole plant community (changes in plant species composition and litter quality). We collected soil from the no N addition treatment (control) and three types of leaf-litter (from three N addition treatments – 0, 40 and 80 kg N ha−1 yr−1) from the N-manipulation field experiment and performed a microcosms controlled decomposition study. Distinct leaf-litter traits were quantified (N and lignin concentration and C/N and lignin/N ratios) and related with decomposition and soil microbial biomass and activity. The leaf-litter consisted mostly of leaves from summer semi-deciduous shrubs, but relative to the control (no N addition), the treatment receiving 80 kg N ha−1 yr−1 had twice the amount of evergreen sclerophyll leaf-litter and higher lignin and N concentrations giving lower C/N and lignin/N ratios. As a result, OM decomposition in the microcosms containing 80 kg N ha−1 yr−1 litter was slower (with concomitant reduction in soil microbial biomass and activity) than in those containing 40 kg N ha−1 yr−1 litter. At the ecosystem level, N-driven changes in plant community altered leaf-litter traits (e.g. increased litter lignin and N content and decreased lignin/N ratio), which were powerful determinants of litter decomposition rates under controlled conditions. The results suggest that increasing N availability in this nutrient poor Mediterranean maquis may select species with litter traits that could delay decomposition and increase soil OM accumulation.


► We accounted for the integrated effects of N enrichment on litter decomposability.
► Litter under the higher N dose had higher contribution from evergreen sclerophylls.
► Litter under the higher N dose had higher lignin and N concentrations.
► Decomposition was delayed in the microcosm with litter from the higher N dose.
► N enrichment in this ecosystem may increase soil organic matter accumulation.

ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Soil Biology and Biochemistry - Volume 58, March 2013, Pages 163–171
نویسندگان
, , , , , , , , ,