کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
2024930 1542636 2012 11 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
Parameter estimation for models of ligninolytic and cellulolytic enzyme kinetics
موضوعات مرتبط
علوم زیستی و بیوفناوری علوم کشاورزی و بیولوژیک دانش خاک شناسی
پیش نمایش صفحه اول مقاله
Parameter estimation for models of ligninolytic and cellulolytic enzyme kinetics
چکیده انگلیسی

While soil enzymes have been explicitly included in the soil organic carbon (SOC) decomposition models, there is a serious lack of suitable data for model parameterization. This study provides well-documented enzymatic parameters for application in enzyme-driven SOC decomposition models from a compilation and analysis of published measurements. In particular, we developed appropriate kinetic parameters for five typical ligninolytic and cellulolytic enzymes (β-glucosidase, cellobiohydrolase, endo-glucanase, peroxidase, and phenol oxidase). The kinetic parameters included the maximum specific enzyme activity (Vmax) and half-saturation constant (Km) in the Michaelis–Menten equation. The activation energy (Ea) and the pH optimum and sensitivity (pHopt and pHsen) were also analyzed. pHsen was estimated by fitting an exponential-quadratic function. The Vmax values, often presented in different units under various measurement conditions, were converted into the same units at a reference temperature (20 °C) and pHopt. Major conclusions are: (i) Both Vmax and Km were log-normal distributed, with no significant difference in Vmax exhibited between enzymes originating from bacteria or fungi. (ii) No significant difference in Vmax was found between cellulases and ligninases; however, there was significant difference in Km between them. (iii) Ligninases had higher Ea values and lower pHopt than cellulases; average ratio of pHsen to pHopt ranged 0.3–0.4 for the five enzymes, which means that an increase or decrease of 1.1–1.7 pH units from pHopt would reduce Vmax by 50%. (iv) Our analysis indicated that the Vmax values from lab measurements with purified enzymes were 1–2 orders of magnitude higher than those for use in SOC decomposition models under field conditions.


► A database for kinetic parameters of 5 lignocellulolytic enzymes is compiled.
► This database allowed the development of probability density functions for parameters.
► The sensitivities of enzymes to temperature and pH are indicated.
► Scaling of parameters from laboratory measurements to filed conditions is discussed.

ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Soil Biology and Biochemistry - Volume 48, May 2012, Pages 28–38
نویسندگان
, , , , ,