کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
2025249 1069989 2011 8 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
Spatial distribution and physiology of biological soil crusts from semi-arid central Spain are related to soil chemistry and shrub cover
موضوعات مرتبط
علوم زیستی و بیوفناوری علوم کشاورزی و بیولوژیک دانش خاک شناسی
پیش نمایش صفحه اول مقاله
Spatial distribution and physiology of biological soil crusts from semi-arid central Spain are related to soil chemistry and shrub cover
چکیده انگلیسی

Despite the critical role of biological soil crusts (BSCs) in arid and semi-arid ecosystem function, few studies are found concerning the most important environmental variables affecting their distribution and physiology. This study seeks to determine soil and microenvironmental factors affecting the spatial distribution and pigment production of BSC-forming lichens and mosses in open patches of a semi-arid Mediterranean kermes oak thicket. We measured late-successional BSC cover, shrub cover, distance to nearest kermes oak (to test for effects of kermes oak thicket microenvironment on BSC), and pigment concentration of one lichen (Cladonia foliacea) and one moss (Pleurochaete squarrosa) species in the Nature Reserve El Regajal-Mar de Ontígola (Central Spain). At the macroscale (>0.5 m), results showed that BSC distribution and pigments were tightly coupled to a suite of soil properties, in particular soil pH, Fe, and Ca. Specifically, soil pH had a positive relationship with the cover of five individual BSC-forming lichen species and was negatively related to pigment production in C. foliacea. When pH was excluded from the analysis, Ca appeared as the main soil variable and was correlated with total BSC cover and total lichen cover. The micronutrient Fe had a significant positive relationship with the concentration of eight pigments in P. squarrosa and was also coupled with the cover of two BSC-forming lichens. Manganese, previously proposed as a key limiting micronutrient for BSCs, affected lichen diversity in a negative way. At the microscale (∼0.5 m), kermes oak microenvironment, shrub cover, and moss cover were determinants of BSC distribution, and total lichen and total BSC cover were overrepresented on N and E-facing shrub microsites. Our findings suggest that soil chemical variability and microsite diversity created by neighbouring vegetation affect BSC distribution in complex and essential ways and that studies aiming to explore BSC-environment relationships should be conducted at various spatial scales. Studies based on species- or group-specific responses are, thus, inadequate to unveil the main factors determining the distribution of the diverse organisms that constitute BSCs and/or to propose potential tools aiming to restore BSC in arid and semiarid ecosystems.


► Semi-arid Mediterranean shrublands host a diverse BSC community.
► Soil nutrients and pH and shrub cover predict distribution patterns of BSCs.
► Patchy structure of resources and shrubs contributes to the diversity of the BSCs.
► BSC-environment relationships should be explored at various spatial scales.
► Studies on BSC community should be integrative with BSC physiology.

ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Soil Biology and Biochemistry - Volume 43, Issue 9, September 2011, Pages 1894–1901
نویسندگان
, , , ,